

The Study of Various Server Architectures for Mobile
Presence Services in Social Network

Applications

Jareena Shaikh*, Bhandari G. M.**
* Computer Engg. Department, Bhivrabai Sawant Polytechnic

** Head of Department, Bhivrabai Sawant Institute of Technology & Reseach

 Abstract- Now a day’s Social network applications are
becoming increasingly popular on mobile devices. There are
various mobile presence services for social network
applications. Presence is a service that allows a user to be
informed about the reachability, availability, and willingness
to communicate of another user. This paper represents the
comparative study of IMS presence server and PresenceCloud
server. We analyze the performance of IMS presence server
and PresenceCloud in terms of the search cost and search
satisfaction level. The search cost is defined as the total
number of messages generated by the presence server when a
user arrives; and search satisfaction level is defined as the
time it takes to search for the arriving user’s friend list. The
results of simulations demonstrate that PresenceCloud
achieves performance gains in the search cost without
compromising search satisfaction.

 Index Terms- Social networks, mobile presence services,
distributed presence servers, cloud computing,
PresenceCloud, IMS

I. INTRODUCTION

obile devices and cloud computing environments can
provide presence-enabled applications, i.e., social

network applications/services, worldwide. Facebook [1],
Twitter [2], Foursquare [3], Google Latitude [4],
buddycloud [5] and Mobile Instant Messaging (MIM) [6],
because of ubiquity of Internet. These presence-enabled
applications are grown rapidly in the last decade.
Mobile network servives exploit the information about the
status of participants including their appearances and
activities to interact with their friends. Now a day’s because
of the wide availability of mobile, social network services
enable participants to share live experiences instantly
across great distances. Presence is a service that allows a
user to be informed about the specified state of another
user. The specified state, such as online/ offline status,
disposition (out to lunch, away from the computer), activity
status (busy, idle), mood (happy, sad) and location of user,
reflects the user’s accessibility, availability and will to
communicate. Presence has become a key enabler for next-
generation services such as push-to-talk (PTT), instant
messaging (IM) and web2.0, which have facilitated
communications among communities of interest, such as
groups of friends, colleagues working on the same projects
and families [1,2]. There are four fundamental entities in a
presence service [3–5]: a principal, a presentity, a watcher
and a presence server, which may exist independently or as
part of application servers (e.g., PTT, IM and Web2.0). A

principal refers to a user who uses presence service and is
the owner of presentities or watchers; a presentity isan
entity that is capable of providing state information to
presence server; a watcher is an entity that subscribes to or
requests the state information about a presentity; and a
presence server is a network entity which has three main
responsibilities: managing the subscription relationships
between watcher and presentity; keeping the latest
presentity state; and notifying corresponding watchers
when the presentity state is updated. A mobile presence
service is an essential component of social network services
in cloud computing environments. The key function of a
mobile presence service is to maintain an up-to-date list of
presence information of all mobile users.
The service must also bind the user’s ID to his/her current
presence information, as well as retrieve and subscribe to
changes in the presence information of the user’s friends. In
social network services, each mobile user has a friend list,
typically called a buddy list, which contains the contact
information of other users that he/she wants to
communicate with. The mobile user’s status is broadcast
automatically to each person on the buddy list whenever
he/she transits from one status to the other. For example,
when a mobile user logs into a social network application,
such as an IM system, through his/her mobile device, the
mobile presence service searches for and notifies everyone
on the user’s buddy list. To maximize a mobile presence
service’s search speed and minimize the notification time,
most presence services use server cluster technology [7].
Currently, more than 500 million people use social network
services on the Internet [1]. Given the growth of social
network applications and mobile network capacity, it is
expected that the number of mobileIn the last decade, many
Internet services have been deployed in distributed
paradigms as well as cloud computing applications. For
example, the services developed by Google and Facebook
are spread among as many distributed servers as possible to
support the huge number of users worldwide. Thus, we
explore the relationship between distributed presence
servers and server network topologies on the Internet, and
propose an efficient and scalable server-to-server overlay
architecture called PresenceCloud to improve the efficiency
of mobile presence services for large-scale social network
services.
Billion shared items every month and Twitter receives
more than55million tweets each day. In the future, mobile
devices will become more powerful, sensing, and media
capture devices. Hence, we believe it is inevitable that

M

Jareena Shaikh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7894-7898

www.ijcsit.com 7894

social network services will be the next generation of
mobile Internet applications. A mobile presence service is
an essential component of social network services in cloud
computing environments. The key function of a mobile
presence service is to maintain up-to-date list of presence
information of all mobile users. The presence information
includes details about a mobile user’s location, availability,
activity, device capability, and preferences. The service
must also bind the user’s ID to his/her current presence
information, as well as retrieve and subscribe to changes in
the presence information of the user’s friends. In social
network services, each mobile user has a friend list,
typically called a buddy list, which contains the contact
information of other users that he/she wants to
communicate with.
The remainder of this paper is organized as follows. The
next section contains a design of IMS Presence Server. The
design of PresenceCloud server is presented in section 3.
Section 4 contains some concluding remarks.

II. DESIGN OF IMS PRESENCE SERVER

 Presence architecture is shown in Figure2.It has three
levels: agents, entities, and a server. The agents collect
information from various sources. The agents are various
programmes.

Fig. 1.Architecture of IMS

The presence user agent collects information from user
devices. Presence network agent collects information from
network elements. Presence external agent collects

information from other networks. Watcher presence agent
provides information to the watcher.

Fig. 2. Presence Architecture

Entities are characterized by the fact that they can process
the SIP messages (UE,S-CSCF, and AS). Entities are
divided into two types. Presentity (presence entity)
provides information about itself and the watcher observes
the status of the others. Watchers are divided into three
groups. The fetcher is only interested in the current status.
Poller is a special kind of Fetcher, which observes status in
certain time intervals. The subscriber also observes the
changes in the presence of entities [13]. The server collects
and sends information about users, which is stored in XML
documents. The presence server receives messages and
assigns it to the correct user. The resource list server
creates lists of users for watchers and sends their status
together. The XML document manager server (XDMS)
supports other parts of the presence server. For example,
XDMS knows that the watcher is authorized to observe the
presence entity. Application server is designed so that it
could control the number of messages. One of the
possibilities is periodic sending of messages. If there are
more messages than the server can send, it puts them into a
waiting queue. If the waiting queue is full, then the server
deletes the messages[14].

2.1. Communication.
There are two processes of exchanging messages in the
presence service. Process of publishing is shown in Fig. 3.
This exchange of messages has two parts. The first is
registration (messages 1–20) and the second is publication
of status (messages 21–32). S-CSCF is assigned to the user
during registration. User equipment (UE) is a telephony
device, which enters IMS through P-CSCF. P- CSCF
through I-CSCF determines where to send the Register
request. The information about where to send the message
and about the user profile for S-CSCF is stored in the HSS.

Jareena Shaikh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7894-7898

www.ijcsit.com 7895

Fig. 3. Publication Status

First, S-CSCF sends a response 401(unauthorized). After
receiving answers, UE creates another Register request,
after which the user will have successfully registered. A
detailed description of the registration is in [15]. In
messages 21–23 UE (presentity) sends its whole status in
request Publish to the application server (presence server).
Messages pass only through P-CSCF and S-CSCF after the
registration. S-CSCF knows where the server is according
to the initial filter a criteria (iFC). The filter is obtained
from the HSS during the registration.

Presence server sends confirmation message
200(OK) as soon as possible, to prevent resending
messages. When changing status, UE sends another request
Publish, which will go the same way as the first one. The
form of the messages is described in[16].The message itself
contains only the change of the status.
The process of subscribing is shown in Fig 4. The figure
describes a situation, when the watcher is in another IMS
network like presence server. Process of registration is the
same as in the previous figure and therefore is not listed.
Entry Point is I-CSCF to another IMS network.
UE(watcher) creates request Subscribe. The filter is in the
request [17]. In the filter, there is information about what
the watcher wants to know. UE enters into its IMS network
through P-CSCF. It continues to S-CSCF. S-CSCF sends
subscribe from the watcher presence network to the
presentity presence network. I-CSCF finds S-CSCF and S-
CSCF sends request to AS, where there is a list of contacts
with status.
Upon receiving the request, the application server verifies
the user’s authority. If it is correct, the application server
sends response 200 (OK). AS sends request Notify with the
body where it contains the information about the presentity
status. Type of watcher is Subscribe in Figure4.

Fig. 4.Subscribe status.

If one of the presentity, which the watcher observes,
changes its state, server sends another Notify message
without request.

III. DESIGN OF PRESENCE CLOUD SERVER

 The past few years has seen a veritable frenzy of
research activity in Internet-scale object searching field,
with many designed protocols and proposed algorithms.
Most of the previous algorithms are used to address the
fixed object searching problem in distributed systems for
different intentions. However, people are nomadic, the
mobile presence information is more mutable and dynamic;
anew design of mobile presence services is needed to
address the buddy-list search problem, especially for the
demand of mobile social network applications. Presence
Cloud is used to construct and maintain distributed server
architecture and can be used to efficiently query the system
for buddy list searches. Presence Cloud consists of three
main components that are run across a set of presence
servers. In the design of Presence Cloud, the ideas of P2P
systems and present a particular design for mobile presence
services has been refined. The three key components of
Presence Cloud are summarized below:
 Presence Cloud server overlay: It organizes presence

servers based on the concept of grid quorum system.
So, the server overlay of Presence Cloud has a
balanced load property and a two-hop diameter node
degrees, where n is the number of presence servers.

 One-hop caching strategy: It is used to reduce the
number of transmitted messages and accelerate query
speed. All presence servers maintain caches for the
buddies offered by their immediate neighbours.

 Directed buddy search: It is based on the directed
search strategy. Presence Cloud ensures an one-hop

Jareena Shaikh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7894-7898

www.ijcsit.com 7896

search, it yields a small constant search latency on
average.

3.1 Presence Cloud Overview
 The primary abstraction exported by our Presence Cloud
issued a scalable server architecture for mobile presence
services, and can be used to efficiently search the desired
buddy lists. We illustrated a simple overview of Presence
Cloud in Fig. 5. In the mobile Internet, a mobile user can
access the Internet and make a data connection to Presence
Cloud via 3G or Wifi services. After the mobile user joins
and authenticates himself/herself to the mobile presence
service, the mobile user is determinately directed to one of
Presence Servers in the Presence Cloud by using the Secure
Hash Algorithm, such as SHA-1. The mobile user opens a
TCP connection to the Presence Server (PSnode) for
control message transmission, particularly for the presence
information. After the control channel is established, the
mobile user sends a request to the connected PSnode for
his/her buddy list searching. Our Presence Cloud shall do
an efficient searching operation and return the presence
information of the desired buddies to the mobile user. Now,
we discuss the three components of Presence-Cloud in
detail below.

Fig 5. Architecture for presence cloud

3.2 Presence Cloud Server Over relay

The Presence Cloud server overlay construction algorithm
organizes the PS nodes into a server-to-server overlay,
which provides a good low-diameter overlay property. The
low-diameter property ensures that a PS node only needs
two hops to reach any other PS nodes.

Fig 6. Presence cloud server overlay

Algorithm1. Presence Cloud Stabilization algorithm

1: /* periodically verify PS node n’s pslist */
2: Definition:
3: pslist: set of the current PS list of this PS node, n
4: pslist[].connection: the current PS node in pslist
5: pslist[].id: identifier of the correct connection in pslist

6: node.id: identifier of PS node node
7: Algorithm:
8: r Sizeof(pslist)
9: for i = 1 to r do
10: node pslist[i].connection
11: if node.id ≠pslist[i].id then
12: /* ask node to refresh n’s PS list entries */
13: findnodeFind_CorrectPSNode(node)
14: if findnode=nil then
15: pslist[i].connectionRandomNode(node)
16: else
17: pslist[i].connectionfindnode
18: end if
19: else
20: /* send a heartbeat message */
21: bfailedSendHeartbeatmsg(node)
22: if bfailed= true then
23: pslist[i].connectionRandomNode(node)
24: end if
25: end if
26: end for

Our algorithm is fault tolerance design. At each PS node, a
simple Stabilization () process periodically contacts
existing PS nodes to maintain the PS list. The Stabilization
() process is elaborately presented in the Algorithm. When
a PS node joins, it obtains its PS list by contacting a root.
However, if a PS node n detects failed PS nodes in its PS
list, it needs to establish new connections with existing PS
nodes. In our algorithm, n should pick a random PS node
that is in the same column or row as the failed PS node.

Directed buddy search algorithm:

1. A mobile user logins PresenceCloud and decides
the associated PS node, q.

2. The user sends a Buddy List Search Message, B to
the PS node q.

3. When the PS node q receives a B, then retrieves
eachbi from B and searches its user list and one-
hopcache to respond to the coming query. And
removes the responded buddies from B.

4. If B = nil, the buddy list search operation is done.
5. Otherwise, if B =nil, the PS node q should hash

each remaining identifier in B to obtain a grid
ID,respectively.

6. Then, the PS node q aggregates these b(g) to
become a new B(j), for each g Sj. Here, PS node j
is the intersection node of Sq intersection Sg. And
sends the new B(j) to PS node j.

One-Hop Caching
 To improve the efficiency of the search operation,
PresenceCloud requires a caching strategy to replicate
presence information of users. In order to adapt to changes
in the presence of users, the caching strategy should be
asynchronous and not require expensive mechanisms for
distributed agreement. In PresenceCloud, each PS node
maintains a user list of presence information of the attached
users, and it is responsible for caching the user list of each
node in its PS list, in other words, PS nodes only replicate

Jareena Shaikh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7894-7898

www.ijcsit.com 7897

the user list at most one hop away from itself. The cache is
updated when neighbours establish connections to it, and
periodically updated with its neighbours. Therefore, when a
PS node receives a query, it can respond not only with
matches from its own user list, but also provide matches
from its caches that are the user lists offered by all of its
neighbours. Our caching strategy does not require
expensive overhead for presence consistency among PS
nodes. When a mobile user changes its presence
information, either because it leaves PresenceCloud, or due
to failure, the responded PS node can disseminate its new
presence to other neighbouring PS nodes for getting
updated quickly.

Fig.7 Directed buddy search

When a PS node 4 receives a Buddy List Search Message,
B (1; 2; 3; 4; 5; 6; 7; 8; 9), from a mobile user, PS node 4
first searches its local user list and the buddy cache, and
then it responds these searched buddies to the mobile user
and removes these searched buddies from B. These
removed buddies include the user lists of PS node
{1,4,5,6,7}. Then, PS node 4 can aggregates b and b to
become a new Bð6Þ and sends the new B to PS node 6.
Note that the ps list Id of PS node 6 is {3,4,5,9}. Here, PS
node 4 also aggregates b and b to become a new and sends
the new Bð5Þ to PS node 5. However, due to the one-hop
caching strategy, PS node 6 has a buddy cache that contains
these user lists of PS node {3,9}, PS node 6 can
expeditiously respond the buddy search message .
Consequently, the directed searching combined with both
previous two mechanisms, including Presence Cloud server
overlay and one-hop caching strategy, can reduce the
number of searching messages sent. Our caching strategy
does not require expensive overhead for presence
consistency among PS nodes. When a mobile user changes
its presence information, either because it leaves Presence
Cloud, or due to failure, the responded PS node can
disseminate its new presence to other neighbouring PS
nodes for getting updated quickly. Consequently, this one-
hop caching strategy ensures that the user’s presence
information could remain mostly up-to date and consistent
throughout the session time of the user.

CONCLUSION
By surveying some papers it is conclude that
PresenceCloud achieves performance gains in the search
cost without compromising search satisfaction. The IMS
model displays the number of incoming and outgoing
messages from the network. Users are in various states at
the beginning, and gradually they log out, log in, and
change their presence status. The change of the number of
transmitted messages is related to this. If we observe this

long enough without changing probability, the model will
be in a stable state. That means that the same number of
users changes their state in every step. We can determine
the expected number of messages from the model, and
according to this, we can design the size of the waiting
queue on the presence server. We can see the ratio of
messages if we want to assign different priorities too.

REFERENCES
[1] R.B. Jennings, E.M. Nahum, D.P. Olshefski, D. Saha, Z.-Y. Shae,

and C. Waters, “A Study of Internet Instant Messaging and Chat
Protocols,” IEEE Network, vol. 20, no. 6, pp. 16-21, July/Aug. 2006.

[2] Z. Xiao, L. Guo, and J. Tracey, “Understanding Instant Messaging
Traffic Characteristics,” Proc. IEEE 27th Int’l Conf. Distributed
Computing Systems (ICDCS), 2007.

[3] Chi, R. Hao, D. Wang, and Z.-Z. Cao, “IMS Presence
Server:aTraffic Analysis and Performance Modelling,” Proc. IEEE
Int’Conf. Network Protocols (ICNP), 2008. Hadi Sadat, “Power
System Analysis, ” Tata McGraw Hill, 2002.

[4] P. Saint-Andre, “Interdomain Presence Scaling Analysis for the
Extensible Messaging and Presence Protocol (XMPP),” aIETF
Internet draft, 2008.

[5] X. Chen, S. Ren, H. Wang, and X. Zhang, “SCOPE: Scalable
Consistency Maintenance in Structured P2P Systems,” Proc. IEEE
INFOCOM, 2005.

[6] N. Banerjee, A. Acharya, and S. K. Das, ”Seamless sip-based
mobility for multimedia applications.” IEEE Network, vol. 20, no. 2,
pp. 6–13, 2006.

[7] P. Bellavista, A. Corradi, and L. Foschini, ”Ims-based presence
service with enhanced scalability and guaranteed qos for interdomain
enterprise mobility,” IEEE Wireless Communications, 2009.

[8] A. Houri, E. Aoki, S. Parameswar, T. Rang, , V. Singh, and H.
Schulzrinne, ”Presence interdomain scaling analysis for sip/simple,”
RFC Internet-Draft, 2009.

[9] M. Maekawa, ”A √n algorithm for mutual exclusion in decentral-
ized systems,” ACM Transactions on Computer Systems, 1985.

[10] D. Eastlake and P. Jones, ”Us secure hash algorithm 1 (SHA1),”
RFC 3174, 2001.

[11] M. Steiner, T. En-Najjary, and E. W. Biersack, ”Long term study of
peer behavior in the kad DHT,” IEEE/ACM Trans. Netw., 2009.

[12] K. Singh and H. Schulzrinne, ”Failover and load sharing in sip
telephony,” International Symposium on Performance Evaluation of
Computer and Telecommunication Systems, July 2005.

[13] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, and J.
Peterson, “RFC 3863: presence information data format
(PIDF),”2004.

[14] H. Schulzrinne, U. Columbia, V. Gurbani, P. Kyzivat, and J.
Rosenberg, “RFC 4480: RPID: rich presence extensions to the
presence information data format(PIDF),”2006.

[15] M.Poikselka, G.Mayer, H.Khartabil, and A.Niemi, The IMS:IP
Multimedia Concepts and Services in the Mobile Domain, John
Wiley&Sons,NewYork,NY,USA,2004.

[16] M. Day, J. Rosenberg, and H. Sugano, “RFC 2778: a model for
presenceandinstantmessaging,”2000.

[17] M. Wuthnow, M. Stafford, and J. Shih, IMS: A New Model for
Blending Applications, Taylor & Francis, BocaRaton, Fla, USA,
2010.

[18] G. Camarillo and M. Garcia-Martin, The 3G IP Multimedia
Subsystem(IMS):Merging the Internet and the Cellular Worlds,
JohnWiley&Sons,NewYork,NY,USA,2ndedition,2006

1. Ms. Jareena N. Shaikh, Lecturer in JSPM’s Bhivrabai

Sawant Polytechnic Wagholi, Pune, India

2. Mrs. Bhandari G.M, Head of Department (Computer),
JSPM’s Bhivrabai Sawant Institute of Technology and
Research, Wagholi, Pune, India

Jareena Shaikh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7894-7898

www.ijcsit.com 7898

